Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism
نویسندگان
چکیده
Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits
Ancient lunar volcanic deposits, known as cryptomaria, have been detected by remote telescopic and orbital measurements since the 1970s. Cryptomaria are most easily identified by the presence of darkhalo impact craters and are associated with a mare basalt mineralogy, which is indicated by two pyroxene spectral absorption features near 1 μm and 2 μm in the visible to near-infrared (VNIR) wavele...
متن کاملDetecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data
Early extrusive volcanism from mantle melting marks the transition from primary to secondary crust formation. Detection of secondary crust is often obscured by the high impact flux early in solar system history. To recognize the relationship between heavily cratered terrain and volcanic resurfacing, this study documents how volcanic resurfacing alters the impact cratering record and models the ...
متن کاملPetrologic Characteristics of the Lunar Surface
Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and...
متن کاملLunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M) data from Chandrayaan‐1
[1] Moon Mineralogy Mapper (M) image and spectral reflectance data are combined to analyze mare basalt units in and adjacent to the Orientale multiring impact basin. Models are assessed for the relationships between basin formation and mare basalt emplacement. Mare basalt emplacement on the western nearside limb began prior to the Orientale event as evidenced by the presence of cryptomaria. The...
متن کاملStructure and formation of the lunar farside highlands.
The formation of the lunar farside highlands has long been an open problem in lunar science. We show that much of the topography and crustal thickness in this terrain can be described by a degree-2 harmonic. No other portion of the Moon exhibits comparable degree-2 structure. The quantified structure of the farside highlands unites them with the nearside and suggests a relation between lunar cr...
متن کامل